cụm này yield larger cycle-to-cycle variations dịch là gì bác nhỉ?
The tumble component of the flow field is transformed into turbulence near TDC by tumble deformation and the associated large velocity gradients, and can only be totally transformed if the combustion chamber geometry is sufficiently flat. Otherwise, an incomplete transformation of tumble kinetic energy will occur, which generally results in an elevated mean flow velocity at the spark gap. Also, tumble-dominated flow fields in GDI engines generally yield larger cycle-to-cycle variations in the mean flow than those obtained for swirl-dominated flows [135,304]. These variations influence both the centroid and the shape of the initial flame kernel following ignition, but do not produce significant changes in the combustion period or flame speed [23]. Further, the tumble component of the motion tends to decay into large-scale secondary flow structures due to the effect of the curved cylinder wall, which makes maintaining a stable mixture stratification more difficult. With respect to turbulence generation, the presence of a significant tumble component is effective in enhancing the turbulence intensity at the end of the compression stroke, which is essential to compensate for the reduced flame speed of a lean stratified mixture. The tumble motion that is present early in the compression stroke rapidly decays into multiple vortices that have a size on the order of the turbulence length scale. This rapid transformation of kinetic energy into turbulence is not generally observed for swirl dominated flow fields. The swirl flow continues to rotate relative to a center point that generally precedes in a complex, precessing path around the vertical cylinder axis for the entire time period from the beginning of the compression stroke to the end of TDC. The cylindrical geometry of the chamber is obviously quite favorable for maintaining a swirling flow with little viscous dissipation [294]. It should be noted, however, that high-swirl-ratio flows may centrifuge the largest droplets from the fuel spray onto the cylinder wall, causing an increase in fuel wall wetting.
thành phần nhào trộn(tumble) trong dòng chảy được biến thành các luồng xoáy gần TDC bởi biến dạng của nhào trộn(tumble )và độ chênh lệch vận tốc, và chỉ có thể hoàn toàn thay đổi nếu hình học buồng đốt khá phẳng.Mặt khác, sư biến đổi không đầy đủ động năng nhào trộn(tumble) mà xảy ra, thường dẫn đến tốc độ trung bình của luồng thường cao tại khe hở bugi .Hơn nữa, ưu điểm dòng chảynhào trộn(tumble) trong động cơ GDI nói chung mang lại hiệu suất lớn khi có thay đổi từ chu kỳ này tới chu kỳ khác trong dòng chảy có hơn là ưu điểm của dòng chảy xoáy [135.304]. Sự thay đổi này ảnh hưởng tới cả trọng tâm và hình dạng của lõi ngọn lửa ban đầu sau khi khởi động, nhưng không tạo ra thay đổi đáng kể trong giai đoạn đốt cháy hoặc tốc độ ngọn lửa [23] .Ngoài ra, thành phần tumble của chuyển động có khuynh hướng phân rã vào cấu trúc luồng thứ cấp vì ảnh hưởng của thành xi lanh , làm cho việc duy trì sự phân tầng hỗn hợp ổn định khó hơn.Trong quá trình tạo ra các luồng xoáy, sự xuất hiện đáng kể của thành phần tumble làm tăng cường độ các luồng xoáy vào cuối kỳ nén, quan trọng để bù đắp cho sự giảm tốc độ ngọn lửa của hỗn hợp phân tầng .Chuyển động tumble xuất hiện sớm trong kỳ nén nhanh chóng tiêu tán vào nhiều cơn lốc có kích cỡ trên thứ tự khoảng chiều dài các luồng xoáy.Sự biến đổi nhanh này của động năng vào trong các luồng xoáy không phải nói chung được quan sát cho chỗ nước xoáy thống trị dòng .Dòng chảy xoáy tiếp tục xoay tương đối đến một điểm trung tâm, nói chung đi trước phức tạp, các đường quay vòng xung quanh trục xi lanh thẳng đứng trong toàn bộ khoảng thời gian từ khi bắt đầu của hành trình nén đến cuối TDC.Dạng hình trụ của buồng đốt là khá thuận lợi cho việc duy trì một dòng chảy xoáy với tiêu hao nhớt ít [294].Cần lưu ý, tỉ lệ dòng chảy xoáy cao có thể làm ly tâm các hạt lớn nhất từ tia phun nhiên liệu vào thành xi lanh, gây ra sự gia tăng nhiên liệu làm ướt tường.